\(\int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\) [156]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 127 \[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {2 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {(5 A-B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}} \]

[Out]

2*A*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d-1/4*(5*A-B)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1
/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*(A-B)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4007, 4005, 3859, 209, 3880} \[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {(5 A-B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {2 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}-\frac {(A-B) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[In]

Int[(A + B*Sec[c + d*x])/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(2*A*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) - ((5*A - B)*ArcTan[(Sqrt[a]*Tan[c +
 d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - ((A - B)*Tan[c + d*x])/(2*d*(a + a*Sec[c +
 d*x])^(3/2))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4007

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[(-(b
*c - a*d))*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1))), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[
e + f*x])^(m + 1)*Simp[a*c*(2*m + 1) - (b*c - a*d)*(m + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f
}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {\int \frac {-2 a A+\frac {1}{2} a (A-B) \sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2} \\ & = -\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {A \int \sqrt {a+a \sec (c+d x)} \, dx}{a^2}-\frac {(5 A-B) \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a} \\ & = -\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {(2 A) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a d}+\frac {(5 A-B) \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d} \\ & = \frac {2 A \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {(5 A-B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.56 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.81 \[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \left (-\left ((5 A-B) \arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {1+\sec (c+d x)}\right )+\sqrt {2} \left (4 A \arctan \left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {1}{1+\sec (c+d x)}}}\right ) \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {1+\sec (c+d x)}-(A-B) \sqrt {\frac {1}{1+\cos (c+d x)}} \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )}{d \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} (a (1+\sec (c+d x)))^{3/2}} \]

[In]

Integrate[(A + B*Sec[c + d*x])/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(Cos[(c + d*x)/2]*Sec[c + d*x]*(-((5*A - B)*ArcSin[Tan[(c + d*x)/2]]*Cos[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*Sqrt[
(1 + Sec[c + d*x])^(-1)]*Sqrt[1 + Sec[c + d*x]]) + Sqrt[2]*(4*A*ArcTan[Tan[(c + d*x)/2]/Sqrt[(1 + Sec[c + d*x]
)^(-1)]]*Cos[(c + d*x)/2]*Sqrt[Sec[c + d*x]]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[1 + Sec[c + d*x]] - (A - B)*Sq
rt[(1 + Cos[c + d*x])^(-1)]*Sin[(c + d*x)/2])))/(d*Sqrt[Sec[(c + d*x)/2]^2]*(a*(1 + Sec[c + d*x]))^(3/2))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(287\) vs. \(2(106)=212\).

Time = 3.29 (sec) , antiderivative size = 288, normalized size of antiderivative = 2.27

method result size
default \(\frac {\sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (A \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+4 A \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )-B \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-5 A \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )+B \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )\right )}{4 a^{2} d}\) \(288\)
parts \(-\frac {A \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-4 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )-\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+5 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )\right )}{4 d \,a^{2}}+\frac {B \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )\right )}{4 d \,a^{2}}\) \(350\)

[In]

int((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/4/a^2/d*(-2*a/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(A*((1-cos(d*
x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c))+4*A*2^(1/2)*arctanh(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c
)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c)))-B*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c))-5*A*
ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2))+B*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2
*csc(d*x+c)^2-1)^(1/2)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 231 vs. \(2 (106) = 212\).

Time = 1.74 (sec) , antiderivative size = 548, normalized size of antiderivative = 4.31 \[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\left [-\frac {4 \, {\left (A - B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \sqrt {2} {\left ({\left (5 \, A - B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (5 \, A - B\right )} \cos \left (d x + c\right ) + 5 \, A - B\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 8 \, {\left (A \cos \left (d x + c\right )^{2} + 2 \, A \cos \left (d x + c\right ) + A\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {2 \, {\left (A - B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \sqrt {2} {\left ({\left (5 \, A - B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (5 \, A - B\right )} \cos \left (d x + c\right ) + 5 \, A - B\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 8 \, {\left (A \cos \left (d x + c\right )^{2} + 2 \, A \cos \left (d x + c\right ) + A\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(4*(A - B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - sqrt(2)*((5*A - B)*cos(d*
x + c)^2 + 2*(5*A - B)*cos(d*x + c) + 5*A - B)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(
d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x +
 c) + 1)) + 8*(A*cos(d*x + c)^2 + 2*A*cos(d*x + c) + A)*sqrt(-a)*log((2*a*cos(d*x + c)^2 + 2*sqrt(-a)*sqrt((a*
cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)))/(a^2*d*co
s(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(2*(A - B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x
+ c)*sin(d*x + c) - sqrt(2)*((5*A - B)*cos(d*x + c)^2 + 2*(5*A - B)*cos(d*x + c) + 5*A - B)*sqrt(a)*arctan(sqr
t(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) + 8*(A*cos(d*x + c)^2 + 2*A*
cos(d*x + c) + A)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))))
/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {A + B \sec {\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral((A + B*sec(c + d*x))/(a*(sec(c + d*x) + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)/(a*sec(d*x + c) + a)^(3/2), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int((A + B/cos(c + d*x))/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int((A + B/cos(c + d*x))/(a + a/cos(c + d*x))^(3/2), x)